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ROBUSTNESS OF ADAPTIVE CONTROL ALGORITHMS
IN THE PRESENCE OF UNMODELED DYNAMICS*

Charles E. Rohrs, Lena Valavani, Michael Athans, and Gunter Stein

Laboratory for Informstion and Decision Systems
Massachusetts Institute of Technology, Cambridge, MA, 02139

ABSTRACT

This paper reports the outcome of an exhaustive analyt-
ical and numerical investigation of stability and ro-
bustness properties of a wide class of adaptive control
algorithms in the presence of ummodeled dynamics and
output disturbances. The class of adaptive algorithms
considered are those commonly referred to as model-
reference adaptive control algorithms, self-tuning
controllers, and dead-beat adaptive controllers; they
have been developed for both continuous~time gsystems
and discrete-time systems. The existing adaptive con-
trol algorithms have been proven to be globally assymp~-
totically stable under certain assumptions, the key ones
being (a) that the number of poles and zeroes of the
unknown plant are known, and (b) that the primary per-
formance criterion is related to good command following.
These theoretical assumptions are too rescrictive from
an engineering point of view. Real plants always con-
tain ummodeled high-frequency dynamics and small delays,
md hence no upper bound on the nymber of the plant
poles and zerves exista. Also real plants are always
subject to wmegsurable output additive disturbances,
although these may be quite small. Hence, it is impor-
tant to critically examine the stability robustness
properties of the existing adaptive algorithms when
some of the theoretical assumptions are removed; in
particular, their stability and performance properties
in the presence of unmodeled dynanics and output dis-
turbances.

A unified analytical approach has been developed and
documented in the recently completed Ph.D. thesis by
Rohrs [15] that can be used to examine the class of
existing adaptive algorithms. It was discovered that
all existing algorithms contain an infinite-gain opera-
tor in the dynamic system that defines command ref-
erence errors and parameter errors; it is argued that
such an infinite gain operator appears to be generic t
all adaptive algorithms, whether they exhibit explicit
or implicit parameter identification. The practical
engineening comsequenced of the existence of the in-
finite-gain operator are disastrous. Analytical and
simulation results demonstrate that sinusoidal reference
inputs at specific freguencies and/or sinusoidal output
disturbances at any frequency (including d.c.) cause the
loop gain of the adaptive control system to increase
without bound, thereby exciting the (unmodeled) plant
dynamics, and yielding an unstable control system.
Hence, it is concluded that none of the adaptive algo-
rithms considered can be used with confidence in a
practical control system design, because {mslability
will set in with a high probability.

*Research support by NASA Ames and Langley Research
Centers under graant NASA/NGL-22-009-124, by the U.S.

Adr Porce Office of Sciencific Research (AFSC) under
grant AFOSR 77-3281, and by the Office of Naval Research
under grant ONR/N00014~82-K-0582(NR 606~003)

Proc. 21st IEEE Conference on Decision
and Control, Orlando, Florida, Dec. 1982.

1. INTRODUCTION

Due to space limitations we cannot possibly provide in
this paper analytical and simulation evidence of all
conclugions outlined in the sbstract. -Rather, we
summarize the basic approach only for a single class
of continuoug~time algorithms that include those of
Monopoli [4], Narendra and Valavani (1], and Feuer and
Morse {2]. However, the same analysis techniques have
been ugsed to analyze more complex classes of (1) con-
tinuous—~time adaptive control algorithms due to
Narendra, Lin, and Valavani (3], both algorithms sug-
gested by Morse [4], and the algorithms suggested by
Egardt [7] which f{nclude those of Landau and Silveira
[6], and Kreigselmeier (19]; and (2) discrete-time

~adaptive control algorithms due to Narendra and Lin [22],

Goodwin, Ramadge, and Caines [23] (the so-called dead-
beat controllers), and those developed in Egardt [17]},
which include the self-tunning~regulator of Astrom and
Wittenmark [18] and that due to Landau (20]. The
thesis by Rohrs [15] contains the full analysis and
gimulation results for the above classes of existing
adaptive algorithms. ’

The end of the 1970's marked significant progress in

the theory of adaptive control, both in terms of ob-
taining global asymptotic stability proofs [1-7] as
well as in unifying diverse adaptive algorithms the
derivation of which was based on different philosophical
viewpoints [8,9].

Unfortunately, the stability proofs of all these algo-
rithms have in common a very restrictive assumption.

For continuous~time implementacion’this assumption is
that the number of the poles and zeroes of the plaat,
and hence its relative degree, i.e., its number of poles
minus its number of zeroes, is known. The counterpart
of this assumption for discrete~time systems is that

the pure delay in the plant is exactly an integer number
of sampling periods and that this integer is known.

This restrictive assumption, in turn, is equivalent to
enabling the designer to realize for an adaptive
algorithm, a positive real error tramsfer fuaction, on
which all stability proofs have heavily hinged to-date
{8]. Posictive realness implies that the phase of the
system cannot exceed + 90° for all frequencies, while

it {s a well known fact that models of physical systems
become very inaccurate in describing actual plant high-~
frequency phase characteristics. Moreover, for prac-
tical reasons, most controller designs need to be based
on models which do not contain all of the plant dynamics,
in order to keep the complexity of the required adaptive
compensator within bounds.

Motivated from such considerations, researchers in the
field recently started investigating the robustness of
adaptive algorithms to violation of the regtrictive
(and unrealistic) assumption of exact knowledge of the
plant order and its relative degree. Iocannou and
Kokotovic [10] obtained error bounds for adaptive
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observers and identifiers in the presence of unmodeled
dynamics, while such analytical results were harder to
obtain for reduced order adaptive coutrollers. The
first such result, obtained by Rohrs et al [11],
consists of "linearization" of the error equations,
under the assumption that the overall system is in its
final approach to convergence. Icannou and Kokotovic
[12) later obtained local stability results in the
presence of unmodeled dynamics, and shouid that the
speed ratio of slow versus fast (unmodeled) dynamics
directly affected the stability region. Earlier simu-
lacion studies by Rohrs ar al [13] had already shown
increased sensitivity of adsptive algorithms to dis-
turbances and unmodeled dynamics, generation of high
frequency control inputs and ultimately instability.
Simple root-locus type plots for the linearized system
in [11] showed how the presence of ummodeled dynamics
could bring about instability of the overall system. It
was also shown chere that the generated frequencies in
the adaptive loop depended nonlinearly on the magnitudes
of the reference input and output.

The main contribution of this paper is in showing that
two operators inherently included in all algorithms
considered —~ as part of the adaptation mechanism --
have infinite gain. As a result, two possible mech-
anisms of instability are isolated and discussed. It is
argued, that the destabilizing effects in the presence
of unmodeled dynamics can be attributed to either phase
~= {n the case of high frequency fnputs -~ or primarily
gain considerations -~ in the case of ummeasurable out-
put disturbances of aty frequency, including d.c., which
result in nonzero steady-state errors. The latter fact
is most disconcerting for the performance of adaptive
algorithms since it cannot be dealt with, given that a
persistent disturbance of any frequency can have a des-
tabilizing effect. . .

Our conclusions that the adaptive algorithms considered
cannot be used for practical adaptive control, because
the physical system will eventually become unstable,
are based upon two facts of life that cannot be ignored
in any physical control design: (1) there are always
unmodeled dynamics at sufficiently high frequencies
(and {t is futile to try to model unmodeled dynamics)
and (2) the plant cannot be isolated from unknown dis-
turbances (e.g., 60 Hz hum) even though these may be
small. Neither of these two practical issues have been
included in the theoretical assumptions common to all
adaptive algorithms considered, and this is why chese
algorithms cannot be usad with confidence. To avoid
exciting unmodeled dynamics, stringent requirements
must be placed upon the bandwidth and phase margin of
the control loop; no such considerations have been
discussed in the literature. It is not at all obvious,
nor easy, how to modify or extend the available algo-
rithms to control their bandwidth, much less their
phase margin properties.

In Section 2 of this paper proofs for the infinite gain
of the operators generic to the adaptation mechanism
are given. Section 3 coutains the development of two
possible meachanisms for instability thac arise as a
result of the infinite gain operators. Simulation
results that show the validity of the heuristic argu-
sents in Section 3 are presented in Sectiom 4. Section
5 contains the conclusions.

2. THE ERROR MODEL STRUCTURE FOR A REPRESENTATIVE
ADAPTIVE ALCORITHM

The simplest prototype for a wodel reference adapcive
control algorithm in continucus~time has its origins to
at least as far back as 1974, {n the paper by Monopoli
[14]. This algorithm has been proven asymptotically

stable only for the case when the relative degree of

the plant is unity or at most two. The algorithms
published by Narendra and Valavani [1] and Feuer and
Morse (2] reduce to the same algorithm for the perti-

nent case. This algoritha will henceforth be referred
to as CAl (continuous-time algorithm No.l)

The following equations summarize the dynamical equa-

tions that describe it; see also Pigure 1. The equa-

tions presented here pertain to the case where a unity

relative degree has been normally assumed. In the equa-

:j(.ox)mob.lau r(t) is the (command) reference input. and
t)=0.

g _B(s)
Plant: y(t) = T [u(t)] 1)
Auxiliary (mbs fue) s o1, -1 (2)
Variables: “ui B(m) ° ’ 2Laeceol
-t . g
in (t) B(s) [y(t)], i llz""ln (3)
r(t) k(£
w(e) = |w (e)); k, (c) = & (t) (3a)
gy(c) g_y(t)
q. B (s)
. - MM
Model: yH(t) AH(SJ fr(t)] (%)
Control T
Input: u(t) = k (¢) wic) . (5)
Qutput
Error: e(t) = y(t) - yH(r.) (6)
Parameter
Adjustment . N
Law: k(e) = k(t) = [ w(t) e(t) N
Nominal
Controllaed
Plant: gre _Kp EBP &)
* - " - x
A AP AKu ‘P BKy
Error B
Equation: e(t) -(3-:-:—* - %ﬁ) [e(e) ]+
~T
, EAB* (L (e) ‘_'.(t)) 9)
A® k*r

In the above equations the following definitions apply:

x(t) e+ B0 (10)

where k* is a constant 2n vector

a a=2 n=-3 -
KA(s) = kA 1)8  + KE(a2)®  teetky)
where k:i is the i-th component of k:
n~1 n-2
* * S +. .o ¥k®,
l(y(.) - kyn' + y(n-l)' +ky

where k;i is the i-th component of k; and the vector

k* componenwise corresponds exactly to the vector k(t)
in eqn. (3a). In the preceding equacion we have tried
to preserve the conventional literature notation [3,4,
5,9], with P representing the characteristic polynomtal
for the state variable filters and k(t) the parameter
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aisalignment vector. The quantity g:}' represents the
A

closed-loop plant transfer function that would result

if k were identically zero, i.e., if a constant coatrol

lav k=k* were used. Under the conventional assumption

that the plant relative degzee is exactly known and, if

8, divides P, then k* can be chosen (1], such that

{—

gre* o g;!af‘ {11)
A* (n)
Ay
If the Relative Degree umuon is violated, m
9.8
M M

can only get as close to ——— as the feedback struc-

ture of the controller allows. The first term on the
right-hand side of eqn. (9) resuits from such a consid-
eration. Note that if eqn. (1l) were satisfied, eqn.
(9) reduces to the familiar error equation form that
has appeared in the literature (8] for exact modeling.
For more details tha reader is referred to the litera-
ture cited in this section as well as to [15].

Figure 2 represents in block diagram form the combina-
tion of parameter adjustment law and error equations
described by (7) and (9).

3. THE INPINITE GAIN OPERATORS

3.1 gQuantitative Proof of Infinite Gain for Operators
of CAl

The error system in Fig. 2 consists of a forward linear

time-invariant operator representing the nominal contral-
.led plant eomplete with unmodeled dynamics, g*B* ,

K*AY
T
and a time-varying feedback oparator. It is this feed-
back operator which is of immediate interest. The
opexator, reproduced in Fig. 3 for the case where w is
a scalar and I'sl. is parameterized by the function w(t)
and can bes reprevented mathematically as:
t
le(t)]= uy + w(e) fw(‘t)e(‘r)d‘r (12)

[¢]

u(e) = Gw(t)

In order to amake the notion of the gain of the operator
G (t){-] precise, we introduce the following operator
eoretic concepts.
A function £{t) from [0,®) to R is said
2e if the the truncated norm
T 1/2

THIIN 9(_[ tz(T)d'r) (13
2

is finite for all finite T.

Definition 1:
to be in L

pefinition 2: The gain of an operator G(f£(t)], which

into functions in L, is defined

maps functions in ch 2e

as
T

| lc[t(t)llln

Il =

sup T (14)
o, |l |:.2

Te(0,™)

If there is no finite number satisfying eqn. (14), then
G is said to have infinite gain.

Theorem 1l: If w(t) is given by
w(t) = b+c si.nmot (15)

for any positive constants b.c.uo, the operator of
oqn. (12) has infinite gain.

Proof: The proof consists of constructing a signal
a(t), such that

I s, [o(c)lll
L,
lim
Toe Hﬁ(t)H: (16)
2
is unbounded.

Lat ¢(t) = a aimot, with a an arbitrary positive
constant and Wy the same constant as in egn. (15).
These signals produce:

1 1
w(t)e(t) = ab sim\ot + Z8 - T8 colmot (17
ke & k, + _, wiT)elT)dT
0
- 1 ab ab ac
=k *tFact + 5 "o cowot: iy nimoe (18)
-] o o
t
u(t) = Gw(:) la(e)] = u, + wit) [ w(t)e(r)dT =
1 abz 1 2 abc
=y + > abct + = +| > acts — Jsinw t +
o 2 @ (2 u, ) °

2 2 2
ab 3abc _. ac
(-a—m—- - )cowoc- ym un2w°t+ T cos&uot
[} -] o
(19)

Next, using standard norm inequalities, we obtain
from eqn. (19)

Tk 12 T T
||u(c)||L2_>_ ||2 abet+ 5 ac’t nimotl,L2 ||\.1°|]L2

2 7T 2 2
ab abe T c ab T
TS IS el 1® -1 - 2 hoomu 17 -
Y Ly Y% ° L, o % ° Ly

2
”3nbc sin2w°t||: -]| cos3uw t:H (20)
O
>|| abct + 3 ac’e sinu t|[] .-(x;)"’ (21)
with
2 2 2
g =l #(.cb_z.) .(_-!zc_),, ac? l_b.z.z .
X ° %o “o Wy Y%
. g’-“-;,"ﬁ:+ ¢< = (22)
o
Now
2
1 1.2 T
gll2 abct*3 ac’t “m"tll"zz -
222 24 23
- abe c2+‘c sl.nzw t#itzsimc dt =
4 4 2
(23)

T g




T 3 2
. .zbzcz 3 . a2t | tw® "“o"
12 6w | 4
0 4w

t cosaw t]‘r
[~]

‘sin2w t - +
()

¢ 0

2.3
a be 2 T
- 3 (2u°t sinu v {uo(t) -2} cowotlo

2@0

222 2.4
abc + ac 3 2 2
2(12 24 )T"zr"'&r“o

24
N
° (32 !
“
Combining inequalities (21) and (25) we arrive at:

2
T 222 24
lated 1] )3(:»«: _a‘e 3 2
( L, Gt i) TR T TR (29)

Also,

A T
{Hc(t)llr 3 - a2 fsinZu tdt < a’r
L, ; ° -
0
Therefore,

222

T 24 172
{luter ]| (agc a‘e )3 2 ]
L SI\T2 % /T KT KT e

T - 2
||.m|lr‘2 a‘r

and, therefocre, G for w as in eqn. (15) has infinite
w
gain.

In addition to the fact that the operator Gw(t) from
e(t) to u(t) has infinite gain, the operator H{ , from
a(t) to k() in Fig. 3 also has infinite gain. This
operator is described by:

<
M,y (0(0)] = R+ [ wit)e(t)dr (31)

Theozrem 2: The operator uw
(15) has infinite gain.

® with w(t) given in eqn.

Proof: Choose eit) = a -1m°t as before.

Then K(t) = B fe(t)] is given by eqn. (18),

Proof of infinite gain for this operator then follows
in exact.y analogous steps as in Theorem 1 and is,
therefore, omitted.

1: Both operators G_ and H_ will also have
infinite gain for vectors !‘(t). sifice the operator

infinite gains can arise from any component of the vec-
tor wit).

Remark 2: The corresponding operators Gw and uw de-

fined for various other adaptive algorithms such as
the Narendra, Lin, Valavani (3] and Morse (4] of the
model reference type, as well as the algorithms devel-
oped by Egardt (9], which include the self-tuning re-
gulators, can also be proven to be infinite gain
operators; see Rohrs (15].

Remark 3: Infinite gain operators are generically pres~

ent in adaptive control and are typically represented
as in Fig. 4, where F(s) is a stable diagonal transfer
function matrix and M is (usually) a memoryless map.

D and C are vectors of various input and output com-
binations, including filtered versions of said signals.
The operator in Fig. 4 can alsc be proven to be infinite
gain (see Rohrs (15]).

3.2 Two Mechanisms of Instability

In this section, we use the algorithm CAl to in-
troduce and delineate two mechanisms which may cause
unstable behavior in the adaptive system CAl, when it is
implemented in the presence of unmodeled dynamics and
excited by sinusoidal reference inputs or by distur-
bances. The arguments made for CAl are also valid for
other classes of algorithms mentioned in Remarks 2 and
3, mutatis mutandis. Since the arguments explaining
instability are somewhat heuristic in nature, they are
verift.ed by simulation. Representative simulation re-
sults are given in Section 4.

3.2.1 The Causes of Possible Instability

in order to demonstrate the infinite gain nature
of the feedback operator of the error system of CAl in
Section 2, it is assumed that a component of w(t) has
the form

wi(t) = b +c sim)ot (32)
and that the error has the form
a(t) = a amwot (33)

The arguments of Section 2 indicate that, if e(t) and
a component of w(t) have distinct sinusoids at a com-
mon frequency, the operator Gw(e) of eqn. (12) and the

operator Bw(t) of eqn. (31) will have infinite gains.

Two possibilities for e(t) and w(t) to have the forms
of eqn. (32) and eqn. (33) are now considered.

case (l): If the reference input consists of a sinu-
soid and a constant, e.g.

r(t) s r, + ¢ unmot (34)

1 2
where r,, and r_ are constants, then the plant output
y(e) wth conuir. a constant term and a sinusoid at
frequency w_. Consequently, through eqns. (2),(3) and
(™, all ts of the vector w(t) will contain a
constant and a sinuscid of frequency W

If the controlled plant matches the model at d.c. but
not at the frequency Wy the output errox

e(t) = y(e) - vu(t) (38)

will contain & sinusoid at frequency w,. Thus, the

conditions for infinite gain in the feedback path of
Figure 1 have been attained.
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Case (2): 1If a sinusoidal disturbance, d(t), at fre-

quency W enters the plant output as shown in Fig. 1,
the sinuSoid will appear in w(t) through the following
equation which replaces egn. (3) in the presence of an
output disturbance

.x-l

“il® = re)

[y(e)+d(e)]);: i=l,2,...,n (36)

The following equation replaces eqn. (6) when an out-
put disturbance is present

e(e) = y(t) + d(t) - Yn(t) (37N

Any sinusoid present in d(t) will also enter e(t)
through eqn. (37). Thus the signal e(t) and w(t) will
contain sinugoids of the same frequency and the op-
erators Hw(t) and Gw(t) will display an infinite gain.

3.2.2 Instability Due to the Gain of the Operator G
of Equation (12) =

The operator G, of eqn. (12) is not only an infinite
gain operator — but its gain influances the system in
such a manner as to allow arguments using linear sys-
tems concepts, as cutlined below.

Assume, initially, that the error signal is of the form
of agqn. (33), i.s., a sinusoid at frequency w_. Assum
also that a component of w(t) is of the form of eqn.
(32), i.e., a constant plus a sinusoid at the same fre-
quency w_ as the input. The output of the infinite
gain opc?ator, Gw(t) of eqn. (12), as given by eqn.

(19), consistsof a sinusoid at frequency R with a gain

which increases linearly with time plus other terms at
0 radians/sec (i.e. d.c¢.) and other harmorics of w,s
i.e. u(t) = %lczt sint + other terms.

The infinite gain operator manifests its large gain
by . roducing at the output a_sinusoid at the same fre-
quency, W, as the input sinusoid but with an amplitude

increasing with time. By concentrating on
the signal at frequancy W and viewing the operator
G' ® as a simple time-increasing gain with no phase

shift at the frequency w °,and very small gain at ather
frequencies, we will be able to come up with a mech-
anism for instability of the error system of Figure 2,

where Gw(t) conaists of the feedback part of the loop.

14:1]
If the fowaxrd path, );’T:T' of the error loop of Figure
3

2, has less than +180° phase shift at the frequency w,
and if the gain of G"(t) were indeed small at all othar

frequencies, then the high gain of G

w (t) at Wy would

not affect the stability of the error loop.
If, however, the forwamd loop, %. does have 180°
T

phase shift at Wy the combination of “his prase shift

with the sign reversal will produce a positive feedback
loop around ths operator Gw(e)’ thereby reinforcing
the sinusoid at the input of G,(¢)- The sinusoid will
then increase in amplitude linearly with time, as the
gain of G!(t) grows, until the combined gain of G!(t,
g
K2Ae
point, the loop itself will become unstable and all

and exceeds unity at the frequency w,- At this

signals will grow without bound very quickly (as the
effects of the unstable loop and continually growing
gain of Gw(c) campound. )

Since the infinite gain of Gw (t) can be achieved at
*B® -
any frequency wo' if %:—. has +180° phase shift at

any frequency, the adlpEiV‘ system is susceptible to
instability frow either a reference input or a dis-
curbance.

Thus the importance of the Relative Degree Assumption,
which essentially allows one to assume that z%:‘ is
4
strictly positive real is seen. The stability proof
of CAlL hinges on the assumption that g*B* is
k*A*

) il passive, i.es.

su:icuy positive real and that G' I

o«
/ IR IO TOE S (38)
0

Both properties of positive realness and passivity
are proparties which are independent of the gain of
the operator involved. However, it is always the case
that, dus to the inevitable ummodeled dynamics, only a
bound is known on the gain of the plant at high fre-

. Therefore, for a large class of unmudeled
dynamics in the plant, including all unmodeled dynamics
with relative degree two or greater, the operator,

i1 ]
a,—:; » will have + 180° phase shift at some frequency
T

and be susceptible to unstable behavior if subjected
to sinusoidal reference inputs and,or disturbances in
that freguency range.

3.2.3 Instability Due to the Gain of the Operator
uw of Equation (31)

In the previous subsection, the situation was examined
where the amplitude of the sinusoidal errxor a(t) grew
with tima dus to a positive feedback mechanism in the
error loop. In this subss<tion, we explore the situa-
tion whare the sinusoidai error, e(t)}, is not at a
frequency where it will grow dus to the error system
but, rather, when there exist persistent steady-state
errors. Such a persistent error could arise from
either or both of the two mechanism discussed in
Section 3.1.

1) A reference input with a number of frequencies is
appiied and the controlled plant with unmodeled dy-
namics cannot match the model in amplitude and phase
for all reference input frequencies involved. This
will cause a persistent sinusoid in both the error
e(t), through eqn. (6), and the signals w(t), through
eqns. (2) and (3), and/or

(2) An output sinusoidal discurbance, d4(t), enters
as shown in Figure 1, causing the persiscent sinusoid
directly on e(t), through eqn. (37), and w(t) through
eqn. (36).

Assume, that through one of the above or any other
mechanism that a component of w(t) contains a sinusoid
at frequency w, as in eqn. (32) and that e(t) contains
a sinusoid of the same frequency. Then the opsrator
Hw ) has infinite gain and the norm of the output

signal ¢t this operator, k(t), increases without bound.
The signal), k(t), will take the form of egn. (18),
repeated hinra:

- ) ab ab ac
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From the second term one can see that the parameters
of the controller, defined in eqn. (10), i.e.,

k(t) = k* + _E(:). will increase without ogqund.

If there are any unmodeled dynamics at all, increasing
the size of the nominal feedback controllex para-
meters without bound will cause the adaptive system to
become unstable. Indeed, since it is the gains of the
nominal feedback lcop that are unbounded, the system
will become unstable for a large class of plants in-
cluding all those whose relative degree is three or
more, even if no unmodeled dynamics are present.

4. SIMULATION RESULTS

In this section the arguments for instability presen-
ted in the previous sections are shown to bhe valid
via simulation.

The simulations were gensrated using a nominally first
order plant with a pair of complex unmodeled poles,
described by

229

2
y(t) = . fu(e)) (39)
(s+1) (32¢30u229)
and & reference model
(&) = == (e(t)} (40)
YH s+3

The simulations were all initialized with
ky(O) -.,65 ; kt(O) = 1.14 (41)

which yield a stable linearigation of-the associated
error equations. PFor the parameter values of eqn.
(41l) one finds that

g*s* 527
A 3 2
s +3ls +2598+527

(42)

The referance input signal was chosen based upon the
discussion of section 3,2.2

z(t) = .3 + 1.85 sin 16.1t , (43)

the frequency 16.1 rad/sec. being the frequency at
which the plant and the trangfer function in (42).i.e.
)9‘-::—:- has 180° phase lag. A small d.c. offset was pro-
3

vided sc that the linearigzed system would be asympto-
tically stable. The relatively large amplitude, 1.85
of the sinusoid in aqn. (43) was chosen so that the
unstable behavior would occur over a reasonable simul-
ation time. The adaptation gains were set equal

to unity.

4.1 $inusoidal Reference Inputs

figure 5 shows the plant output and parameters k:(e)
and ly(:) for the conditions described so fax. The

amplitude of the plant output at the critical frequency
(0;16.1 rad/sac) and the parameters grow linearly

with time until the loop gain of the error system
becomes larger than unity. At this point in time,
even though the parameter values are well within the
region of stability for the linearised system, highly
unstable behavior results.

rigure 6 shows the results of a simulation, this time

with the reference input
r(t) = .3+2.0 sin8.0t (44)

This simulation demonstrates that if the sinusoid in-
put is at a frequency for which the nominal controlled
plant does not generate a large phase shift (at
mo-a.o, the phase shift of eqn. (42) is -1313°), the

algorithm may stabilize despite the high gain operator.
Similar results were obtained for the algorithms des-

cribed in (3,4,6,7,9], but are not included here due
to space considerations. The reader is referred to

(15] for a more comprehensive set of simulation results,

in which instability occurs via both the mechanisms
described in sections 3.2.2 and 3.2.3, for sinusoidsl

inputs.

4.2 Simulations with Output Disturbances

The results in this subsection demonstrata that the
instability mechanism explained in Section 3.2.2 does
indeed occur when there is an additive unknown output
disturbance at the wrong frequency, sentering the systus

as shown in Fig. 1. In addition, the instability mecha-

nism of section 3.2.3, which will drive the algorithms
unstable when there is a sinusoidal disturbance at any
frequency, is also shown to take place. The same
numerical example is employed here as well.

Instability via the Phase Mechanism of Section 3.2.2

In this case, CAl was driven by a constant reference
input

z(t) = .3 (45)

with a very small output additive disturbance

6

d(t) = 5.5¢ + 10 ° sin 16.1t (46)

The results are shown in Fig. 7, and instability occurs

as predicted. The only 'P’i" may be the minuteness
of the disturbance ( 10-°) which will cause instability.

Instability via the Gain Increass Mechanism
of Section 3.2.3

Figure 8 shows the results of a simulation of CAl that
was generated with

r=0.3

but the disturbance was changed to

a(e) o 8.0x10"° sinst (a7
At @ =5, %:—:- of eqn. (42) provides only ~102° phase
-]

shift so th§ sinusoidal error signal ol iacreasing
amplitude, which is characteristic of instability via
the mechanism of Section 3.2.2, i{s not seen in Fig. 8.
What is seen is that the system becomes unstable by
the mechanism of Section 3,.2.3. While the output appear
to settle down to a steady state sinusoidal error, the
ky parameter drifts away until the point where the con-

troller becomes unstable. (Only the onsat of unstable
behavior is shown in Figure 8 in order to maintain
scale). We note also that even when the error appeared
settled, its valus represented a large disturbance am-
_plification rather than disturbance rejectiom.

mogt disconcerti of this analysis is that
none of the systems analysed have been able to counter

this parameter drift for a sinusoidal disturbance at
any frequency tried:

SN e
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Indeed, Figure 9 shows the results of a simulation run
with reference input

r=0.0 (48)

and constant disturbance

a=3.0x10° (49)

The simulation results show that the output gain settle
for a long time, again with disturbance amplification,
but the parameter k _ increases in magnitude until i1as-

tability ensues.” us the adaptive algorithm shows ro
ability to act even as a regulator when thers are output
discurbances.

5. CONCLUSIONS

In this paper it was shown, by analytical methods and
verified by simulation results, that existing adaptive
algorithms as describedin (1-4,6,7,19], have imbedded
in their adaptation mechanisms infinite gain operators
which, in the presence of unmodeled dynamics, will
cause:

® ingtability, if the reference input is a high
frequency sinusoid

®disturbance amplification and instability
if there is a sinusoidal output disturbance
at any frequency including d.c.

®instability, at any frequency of reference inputs
for which there is a non-zero steady state error.

While the first problem can ba allaviated by proper
limitations on the class of permissible reference in-
puts, the designer has no control over the additive
output disturbances which impact his system, or of nan-
Zero steady-state errors that are a consequence of
imperfect model matching. S$inusoidal disturbances and
inexact matching conditions are extremely common in
practice and can produce disastrous instabilities in
the adaptive algoritims considered.

Suggested remedies in the literature such as low pass
filtering of plant output or error signal ([26,7,21]
will not work either. .

It is shown in (15) that adding the filter to the out-
put of the plant does nothing to change the basic sta-
bility problem as discussed in section 3.2. It is
also shown in [15] that filtering of the output error
merely results in the destabilizing input, being at a
lower frequency.

Exactly analogous results were also obtained for dis-
crete~-time algorithms as described in [5,17,18,20) and
have been reported in (15].

Finally, unless something is done to eliminate the ad-
verse reaction to disturbances-at any frequency~and to
nonsero steady-state errors in the presence of unmodsled
dynamics, the existing adaptive algorithms cannot be
considered as serious practical alternatives to other
methods of coatrol.
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Figure 5: Simulation of Cal with unmodeled dynamics

and r(t)=0.3 + 1.85sinl6.1t.
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Figure 6: Simulation of CAl with unmodeled dynamics

and r(tjw0.3 + 2.08in8.0t.
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Figure 7: Simulation of CAl with unmodeled dynamics,
r{t)=0.3, and d(t)=5.59x10"Osinl6.1¢.

(System eventually becomes unstable).
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r(t)=0.3, and d(t)=8.0x10~6sins.0t.
(System eventually becomes unstable).

mu'um
e
)

Figure 9: Simulation of CAl with unmodeled dynamics,
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